

http://www.RinkyDinkElectronics.com/ (C)2014 Rinky-Dink Electronics, Henning Karlsen

DS3231

DS3231 I2C Real-Time Clock Arduino and chipKit library

Manual

Library Manual: DS3231 Page 1

Introduction:
This library has been made to easily interface and use the DS3231 RTC with an Arduino or
chipKit. The library will also work with the DS3232 RTC chip but you will not be able to use
the internal SRAM.

This library will default to I2C Fast Mode (400 KHz) when using the hardware I2C interface.

The library has not been tested in combination with the Wire library and I have no idea if
they can share pins. Do not send me any questions about this. If you experience problems with
pin-sharing you can move the DS3231/DS3232 SDA and SCL pins to any available pins on your
development board. This library will in this case fall back to a software-based, TWI-/I2C-like
protocol which will require exclusive access to the pins used.

I highly recommend using the DS3231 (or DS3232) instead of the DS1307. While the DS3231/DS3232
may be slightly more expensive than the DS1307 it is much more accurate due to the internal
TCXO (temperature-compensated crystal oscillator) and crystal. This also means that you don’t
have to use an external crystal like you have to with the DS1307.

If you are using a chipKit Uno32 or uC32 and you want to use the hardware I2C interface you
must remember to set the JP6 and JP8 jumpers to the I2C position (closest to the analog pins).

From the DS3231 datasheet:

Please note that this library only makes use of the 24-hour format, and that alarms are not
implemented.

You can always find the latest version of the library at http://www.RinkyDinkElectronics.com/

For version information, please refer to version.txt.

The DS3231 is a low-cost, extremely accurate I2C realtime clock (RTC) with an
integrated temperaturecompensated crystal oscillator (TCXO) and crystal. The
device incorporates a battery input, and maintains accurate timekeeping when main
power to the device is interrupted. The integration of the crystal resonator
enhances the long-term accuracy of the device as well as reduces the piece-part
count in a manufacturing line. The DS3231 is available in commercial and
industrial temperature ranges, and is offered in a 16-pin, 300-mil SO package.

The RTC maintains seconds, minutes, hours, day, date, month, and year
information. The date at the end of the month is automatically adjusted for
months with fewer than 31 days, including corrections for leap year. The clock
operates in either the 24-hour or 12-hour format with an AM/PM indicator. Two
programmable time-of-day alarms and a programmable square-wave output are
provided. Address and data are transferred serially through an I2C bidirectional
bus.

A precision temperature-compensated voltage reference and comparator circuit
monitors the status of VCC to detect power failures, to provide a reset output,
and to automatically switch to the backup supply when necessary. Additionally,
the RST pin is monitored as a pushbutton input for generating a μP reset.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

Library Manual: DS3231 Page 2

Structures:

Time;
Structure to manipulate time- and date-data.

Variables: hour, min, sec: For holding time-data

date, mon, year: For holding date-data
dow: Day-of-the-week with Monday being the first day

Usage: Time t; // Define a structure named t of the Time-class

Defined Literals:

Weekdays
For use with setDOW() and Time.dow

MONDAY:
TUESDAY:

WEDNESDAY:
THURSDAY:

FRIDAY:
SATURDAY:

SUNDAY:

 1
2
3
4
5
6
7

Select length

For use with getTimeStr(), getDateStr(), getDOWStr() and getMonthStr()

FORMAT_SHORT:
FORMAT_LONG:

 1
2

Select date format

For use with getDateStr()

FORMAT_LITTLEENDIAN:
FORMAT_BIGENDIAN:

FORMAT_MIDDLEENDIAN:

 1
2
3

Select Square Wave Output rate

For use with setSQWRate()

SQW_RATE_1:
SQW_RATE_1K:
SQW_RATE_4K:
SQW_RATE_8K:

 0
1
2
3

Select Output signal for the INT/SQW pin

For use with setOutput()

OUTPUT_SQW:
OUTPUT_INT:

 0
1

Library Manual: DS3231 Page 3

Functions:

DS3231(SDA, SCL);
The main class constructor.

Parameters: SDA: Pin connected to the SDA-pin of the DS3231

SCL: Pin connected to the SCL-pin of the DS3231

Usage: DS3231 rtc(SDA, SCL); // Start an instance of the DS3231 class using the hardware I2C interface

Notes: You can connect the DS3231 to any available pin but if you use any other than hardware I2C pin the
library will fall back to a software-based, TWI-like protocol which will require exclusive access to
the pins used, and you will also have to use appropriate, external pull-up resistors on the data and
clock signals. External pull-up resistors are always needed on chipKit boards.

getTime();

Get current data from the DS3231.

Parameters: None

Returns: Time-structure

Usage: t = rtc.getTime(); // Read current time and date.

getTimeStr([format]);

Get current time as a string.

Parameters: format: <Optional>

 FORMAT_LONG "hh:mm:ss" (default)
 FORMAT_SHORT "hh:mm"

Returns: String containing the current time with or without seconds.

Usage: Serial.print(rtc.getTimeStr()); // Send the current time over a serial connection

getDateStr([slformat[, eformat[, divider]]]);

Get current date as a string.

Parameters: slformat: <Optional> *1

 FORMAT_LONG Year with 4 digits (yyyy) (default)
 FORMAT_SHORT Year with 2 digits (yy)
eformat: <Optional> *2
 FORMAT_LITTLEENDIAN "dd.mm.yyyy" (default)
 FORMAT_BIGENDIAN "yyyy.mm.dd"
 FORMAT_MIDDLEENDIAN "mm.dd.yyyy"
divider: <Optional>
 Single character to use as divider. Default is '.'

Returns: String containing the current date in the specified format.

Usage: Serial.print(rtc.getDateStr()); // Send the current date over a serial

Notes: *1: Required if you need eformat or divider.
*2: Required if you need divider. More information on Wikipedia
(http://en.wikipedia.org/wiki/Date_format#Date_format).

getDOWStr([format]);

Get current day-of-the-week as a string.

Parameters: format: <Optional>

 FORMAT_LONG Day-of-the-week in English (default)
 FORMAT_SHORT Abbreviated Day-of-the-week in English (3 letters)

Returns: String containing the current day-of-the-week in full or abbreviated format.

Usage: Serial.print(rtc.getDOWStr(FORMAT_SHORT)); // Send the current day in abbreviated format over a
serial connection

getMonthStr([format]);

Get current month as a string.

Parameters: format: <Optional>

 FORMAT_LONG Month in English (default)
 FORMAT_SHORT Abbreviated month in English (3 letters)

Returns: String containing the current month in full or abbreviated format.

Usage: Serial.print(rtc.getMonthStr()); // Send the current month over a serial connection

Library Manual: DS3231 Page 4

getUnixTime(time);

Convert the supplied time to the Unixtime format.

Parameters: time: A Time structure containing the time and date to convert

Returns: (long) Unixtime of the supplied Time structure

Usage: Serial.print(rtc.getUnixTime(rtc.getTime())); // Send the current Unixtime over a serial connection

getTemp();

Get the current temperature from the DS3231 internal thermometer.

Parameters: None

Returns: (float) Current temperature of the DS3231 chip in ° Celsius

Usage: Serial.print(rtc.getTemp()); // Send the temperature over a serial connection

Notes: The internal temperature is measured and updated every 64 seconds.
The temperature has a resolution of 0.25°C.

setTime(hour, min, sec);

Set the time.

Parameters: hour: Hour to store in the DS3231 (0-23)

min: Minute to store in the DS3231 (0-59)
sec: Second to store in the DS3231 (0-59)

Returns: Nothing

Usage: rtc.setTime(23, 59, 59); // Set the time to 23:59:59

setDate(date, mon, year);

Set the date.

Parameters: date: Date of the month to store in the DS3231 (1-31) *1

mon: Month to store in the DS3231 (1-12)
year: Year to store in the DS3231 (2000-2099)

Returns: Nothing

Usage: rtc.setDate(4, 7, 2014); // Set the date to July 4th 2014.

Notes: *1: No checking for illegal dates so Feb 31th is possible to input. The effect of doing this is
unknown.

setDOW([dow]);

Set the day-of-the-week.

Parameters: dow: <Optional>

 Day of the week to store in the DS3231 (1-7) *1

If no parameter is given the dow will be calculated from the date currently stored in the DS3231.

Returns: Nothing

Usage: rtc.setDOW(FRIDAY); // Set the day-of-the-week to be Friday

Notes: *1: Monday is 1, and through to Sunday being 7.

Library Manual: DS3231 Page 5

enable32KHz(enable);

Enable or disable Square Wave output on the 32kHz pin.

Parameters: enable: TRUE enables Square Wave output, and FALSE disables it.

Returns: Nothing

Usage: rtc.enable32KHz(true); // Enable 32KHz Square Wave

setOutput(mode);

Select what signal will be output on the INT/SQW pin.

Parameters: mode: OUTPUT_SQW or OUTPUT_INT

Returns: Nothing

Usage: rtc.setOutput(OUTPUT_SQW); // Enable SQW output on the INT/SQW pin

setSQWRate(rate);

Set the Square Wave output rate if the INT/SQW pin is set to output SQW.

Parameters: rate: SQW_RATE_1 sets a 1Hz rate
 SQW_RATE_1K sets a 1.024KHz rate
 SQW_RATE_4K sets a 4.096KHz rate
 SQW_RATE_8K sets a 8.192KHz rate

Returns: Nothing

Usage: rtc.setSQWRate(SQW_RATE_1); // Sets the rate for SQW to 1 Hz

